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1. User Manual
Maya Fluid Simulator is a PIC/FLIP tool that allows you to simulate particle fluids.

1.10 Installation
Before running the tool, you must install Numpy into your Maya distribution. Numpy 

is a popular choice when programming simulations as it can be 5 to 100 times faster than 
regular Python lists (Verma 2020). To install Numpy, run the code below in a terminal. Make 
sure that you edit the path to fit your Maya version.

Windows:
"C:\Program Files\Autodesk\Maya2023\bin\mayapy.exe" -m pip install --user numpy

Linux:
/usr/autodesk/maya2023/bin/mayapy -m pip install --user numpy

Mac:
/Applications/Autodesk/maya2023/Maya.app/Contents/bin/mayapy -m pip install 
–user numpy

Once Numpy has finished installing, you can start Maya and load the script. When 
you hit run, a panel titled “Maya Fluid Simulator” should appear on the Maya top bar.

1.20 Usage
To use the tool, open the user interface by pressing Maya Fluid Simulator -> Open 

Maya Fluid Simulator. You’ll see several options and buttons appear. A video on how to use 
Maya Fluid Simulator can be found in artefacts/videos/MFS_tutorial.mp4

Initialize

Particle Size (0.1) The size of the particles (diameter)

Cell Size (0.25) Size of cells for collision searches and 
velocity transfer. A larger cell size than 
the particle size can result in a stepped 
look.

Random Sampling (0) The number of particles to randomly 
sample inside the source object cells. A 
value of 0 will evenly distribute 
particles within the source object.

Domain Size (5, 5, 5) The size of the simulation domain
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Keep Domain (True) Keep the domain when re-initializing 
points.

Initialize | x Create particles in the source object and 
create a domain object | Delete all the 
generated artefacts

Simulate

Force (0, -9.8, 0) The amount of global force that acts on 
the particles

Initial Velocity (0, 0, 0) The amount of initial particle velocity

Pressure (0.1) The amount of pressure divergence. 
Large values will force particles apart 
faster.

Overrelaxation (0.02) The amount of velocity divergence. Be 
careful setting this value too high.

Iterations (5) The number of iterations for solving the 
divergence. Higher iterations will spread 
particles out more, filling up more 
volume.

PIC / FLIP Mix (0.6) Blending between PIC (smooth)  / FLIP 
(splashy)

Frame Range (0, 120) The start and end frames for the 
simulation

Time Scale (0.1) The speed of the simulation

Simulate | x Simulate the fluid | Clear the simulation
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2. Code Breakdown

2.1 Navier Stokes, PIC, and FLIP
Maya Fluid Simulator relies on the Navier Stokes equations. The equations state that 

the divergence of the fluid (its compression) is always 0 and that the acceleration of the fluid 
is related to its pressure gradient, viscosity, and external forces. (Harris 2007)

Figure 1. Navier Stokes Equations

(1)

There are numerous ways to implement the Navier Stokes equations into a fluid 
simulator, aside from SPH (Smoothed Particle Hydrodynamics), two of the most popular 
methods are PIC (Particle in Cell), and FLIP (Fluid Implicit Particles). Both methods 
combine Lagrangian simulation with Euler simulation. 

The Lagrangian simulation method relies on particle movement to describe fluid 
motion. This is often more realistic as fluid is (fundamentally) made of particles. However, 
this method can be extremely computationally expensive when calculating divergence and 
solving the pressure gradient. The Euler method combats this computational time by storing 
velocity, density, and other attributes within a grid. This is often the preferred method for 
gas-based simulations such as fire and smoke, as it is much faster to calculate. However, the 
particle-like nature of the fluid is lost. (Englesson et al. 2011)

PIC and FLIP combine the particle-like nature of lagrangian simulations with the 
speed of Eulerian. The method is explained below.

1. Particle velocities are transferred to the grid and density is calculated. The velocity 
grid is then copied

2. A timestep is calculated
3. Boundaries are enforced

4. Fluid is made divergence-free
5. Velocity is transferred to the particles using the old and new velocity grids

6. Particle collisions are handled
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2.2 Particle to Grid and Grid to Particle
One of the most important parts of the algorithm was transferring velocity between 

the particles and the grid. This was done through trilinear interpolation on a staggered grid. A 
staggered grid offsets the position of certain attributes so that they can be interpolated and 
averaged correctly. (Braley and Sandu 2009)

Figure 2. A 2-dimensional example of a staggered grid. Velocities are stored on the edges of cells, while 
pressure is stored in the centre of cells. (Kampanis and Ekaterinaris 2005)

Pressure was stored in an array the size of the domain resolution, whilst velocities 
were stored in arrays with a size +1 on their corresponding index.

self.velocity_u = np.zeros((self.resolution[0]+1, self.resolution[1], self.resolution[2]), dtype="float64")
self.velocity_v = np.zeros((self.resolution[0], self.resolution[1]+1, self.resolution[2]), dtype="float64")
self.velocity_w = np.zeros((self.resolution[0], self.resolution[1], self.resolution[2]+1), dtype="float64")
self.pressure = np.zeros((self.resolution[0], self.resolution[1], self.resolution[2]), dtype="float64")

The weights were calculated by finding the particle offset in cell space (dx =  x - 
int(x)), and then multiplying by an in_bounds() check. This means any velocity values 
outside the domain (which don't exist), don't contribute to the trilinear interpolation.

c000 = (1 - dx) * (1 - dy) * (1 - dz) * self.in_bounds(i, j, k, resolution[0], resolution[1], resolution[2])

Figure 3. A visual example of tri-linear interpolation (Wikipedia 2023)
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The first line is how velocity would be transferred from a particle to the grid. The 
second line is the inverse; grid to particle.

self.velocity_v[min(i, self.resolution[0] - 1)][min(j, self.resolution[1])][min(k, self.resolution[2] - 1)] += 
p.velocity[1] * c000

velocity_v += self.velocity_v[min(i, self.resolution[0]-1)][min(j, self.resolution[1] )][min(k, self.resolution[2] 
-1)] * c000

To keep the simulation stable, velocities must be normalised by the sum of their 
weights. An average pressure value must also be calculated for the first frame of the 
simulation. This is very important for making sure the divergence calculation is correct.

2.3 Finding dt
With Lagrangian simulations, a timestep can remain constant as the particles aren't 

traversing any grids. In PIC and FLIP, however, the particles cannot skip over cells, as doing 
so may destabilise the simulation. Therefore, a timestep needs to be calculated. This concept 
is the CFL (Courant–Friedrichs–Lewy) condition. The technique implemented below was 
inspired by Robert Bridson. (Braley and Sandu 2009)

    def calc_dt(self, particles, timescale, external_force):
        max_speed = 0

        for particle in particles:
            speed = np.linalg.norm(particle.velocity)
            max_speed = max(max_speed, speed)

        max_dist = np.linalg.norm(self.cell_size) * np.linalg.norm(external_force)

        if (max_speed <= 0):
            max_speed = 1

        return min(timescale, max(timescale * max_dist / max_speed, 1))

The function finds the fastest particle and calculates a timestep so that the particle 
would move only 1 grid cell. A timescale variable is used so users can set the visual speed of 
the simulation.

2.4 Enforcing Boundaries
Enforcing boundaries is extremely simple. Using the Neumann Boundary condition, 

all boundary velocity components that point out of the domain are set to 0. The loss of 
velocity is then corrected when the divergence is solved. (Englesson et al. 2011)

2.5 Solving Divergence
There are numerous ways to make the fluid velocity field divergence-free, but the 

easiest to implement is the Gauss-Seidel method (a modern version of the Jacobi method). 
Divergence is calculated by finding the velocity difference in each cell, then a pressure force 
is subtracted. (Müller 2022)
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divergence = overrelaxation * (
                            (self.velocity_u[i+1][j][k] - self.velocity_u[i][j][k]) / self.cell_size[0] +
                            (self.velocity_v[i][j+1][k] - self.velocity_v[i][j][k]) / self.cell_size[1] +
                            (self.velocity_w[i][j][k+1] - self.velocity_w[i][j][k]) / self.cell_size[2]
                        ) - stiffness * (self.pressure[i][j][k] - rest_pressure)

A border value is then calculated to spread the divergence evenly along each velocity 
component. 

self.velocity_u[i][j][k] += divergence * self.in_bounds(i-1, j, k, self.resolution[0], self.resolution[1], 
self.resolution[2] ) / borders

self.velocity_u[i+1][j][k] -= divergence * self.in_bounds(i+1, j, k, self.resolution[0], self.resolution[1], 
self.resolution[2]) / borders

2.6 Particle Collisions
Two types of collisions need to be handled in the simulation: domain and particle. 

Handling domain collisions is relatively simple. Integrate the particle, then check if its 
position is outside the domain. If so,  zero its velocity (across the axis), and set the particle 
position to the boundary edge.

if (x < min_x):
x = min_x
vx = 0

Negating the velocity is also an option. However, Maya Fluid Simulator would need to 
simulate more frames for the fluid to reach a rest state.

Although not required, implementing particle collisions helps stabilise the simulation 
and maintains the fluid volume. Generally, particle collisions are detected by checking if the 
distance between two particles is less than their radii combined. Particles that do collide are 
de-intersected and have their velocities swapped.

if (dist < r1+r2):
          temp_velocity = particle.velocity
          particle.velocity = other.velocity
          other.velocity = temp_velocity

          overlap = (pscale) - dist

          if (dist > 0):
                    dx /= dist
                    dy /= dist
                    dz /= dist

           move = [dx * overlap * 0.5, dy * overlap * 0.5, dz * overlap * 0.5]

           particle.position -= move
           other.position += move
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As the number of particles increases, the time needed to calculate particle collisions 
increases dramatically. To combat this, Hash mapping was implemented. Hash mapping 
assigns close particles to the same array, heavily reducing the number of collision tests 
between particles. (Rotenberg 2017)

2.7 PIC and FLIP
Although PIC and FLIP follow (essentially) the same code structure. The way they 

affect particle velocity is slightly different. For PIC, velocity from the grid is directly 
assigned to the particle velocity. For FLIP, a velocity difference is calculated between the old 
grid (particle to grid) and the grid after all the force and divergence calculations. The velocity 
difference is then added to the particle velocity. (Englesson et al. 2011)

Figure 4. A visual difference between PIC (left) and FLIP (right) (Salomonsson 2011)

PIC is usually more viscous, and FLIP is usually more splashy. The purpose of the 
PIC/FLIP slider is so that users can choose how much viscosity they want the fluid to have. 
This is also why the viscosity force was left out of the code.

When interpolating the velocities from the grid, particles are often integrated 
backwards by their velocity. Maya Fluid Simulator uses simple Backward Euler integration, 
however, more accurate methods such as Runge-Kutta exist. (Englesson et al. 2011)

2.8 Program Structure
The code for Maya Fluid Simulator is split into two main sections. The tool, which 

takes up the first chunk of code, and the simulator, which takes up the second chunk.

The tool is what interfaces with Maya, It's built into a class so that it can have 
localised global variables. It deals with creating the user interface, managing particles and 
domains, and starting the simulation. Below are the associated functions with the tool.
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class MFS_Plugin()

__init__
MFS_create_menu

MFS_popup
MFS_delete_menu

MFS_initialize
MFS_simulate

keyframe
MFS_delete
MFS_reset

get_active_object
can_simulate

mesh_to_points
is_point_inside_mesh

The simulator is not linked to Maya at all. It creates particle data types and does its 
simulation within the MFS_Grid class, only referencing the variables from the user interface. 
This way of working makes it very easy to know what issues are from Maya, and what are 
from the simulator.

class MFS_Particle()

__init__
integrate

class MFS_Grid()

__init__
particles_to_grid
average_pressure

in_bounds
get_trilinear_weights

calc_dt
apply_forces

enfource_boundaries
solve_divergence
grid_to_particles

handle_collisions_and_boundary
get_velocity

get_grid_coords
insert_particles_into_hash_table
get_particles_from_hash_table

hash_coords
clear

Further explanations of all the functions can be found within the Python code.

While implementing Maya Fluid Simulator, a 2-dimensional version of the code was written 
in javascript to help with debugging. The program can be found in src/other/picflip2d.html
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Figure 5. A 2D Javascript implementation of the simulator 

2.9 Sourcing Objects
One algorithm that deserves recognition is the sourcing algorithm used in 

MFS_Plugin.initialise(). When an object is selected and initialised, it becomes a source 
object and its name is used for its corresponding domain and particles. The domain centre is 
at the centre of the source object, and its cell numbers are stored in the subdivisions of the 
grid. 

When sourcing the particles, the tool looks at the bounds of the source object and 
creates a 3-dimensional point grid inside of it. Each particle is then checked to be within the 
source object. To check whether a point is inside a mesh, a ray is cast from the point in a 
random direction. The number of intersections between the ray and the source object is then 
counted, and if there is an odd number of intersections then the point is inside the mesh. This 
method only works when the source object is a closed mesh. There is also a possibility that an 
outside ray could touch the boundary object, however, the chances of that happening in this 
program are very low and can be easily dealt with by the user.

Figure 6. Point A is outside the mesh as there are even ray intersections. Point B is inside the mesh as there 
are odd ray intersections.
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The code for testing if a point is inside a mesh is referenced below, as it is an extremely 
powerful function.

    def is_point_inside_mesh(self, point, mesh):
        ''' is_point_inside_mesh checks if a point is inside a specific mesh.
        To do this, a ray is fired from (at a random direction) the point. 
        If the ray intersects with the mesh an uneven number of times, the point is inside the mesh.

        point       : the point position
        mesh        : the mesh to check if the point is in
        
        This only works if the mesh is enclosed, any gaps in the geometry can lead to unstable results.

        There is also a slight chance that a ray could 'touch' the mesh, resulting in the algorithm thinking an 
outside particle is inside the object.
        '''
        # Random ray direction
        direction = om.MVector(random.random(), random.random(), random.random())
        
        selection_list = om.MSelectionList()
        selection_list.add(mesh)
        dag_path = selection_list.getDagPath(0)
        
        fn_mesh = om.MFnMesh(dag_path)
        intersections = fn_mesh.allIntersections(
            om.MFloatPoint(point),
            om.MFloatVector(direction),
            om.MSpace.kWorld,
            999999,
            False
        )

        if (intersections is not None):
            num_intersections = len(intersections[0])
            return num_intersections % 2 != 0

        return False

3. Conclusion

3.1 Results
Below are some benchmark tests for Maya Fluid Simulator. Tests were run on 

Windows 10 Enterprise with an Intel i7-13700, 64.0 GB RAM, and NVIDIA GeForce RTX 
4080.
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Default Donut
Particle Scale: 0.1

Cell Size: 0.2
Domain: 5x5x5

Force: (0, -9.8, 0)
Velocity: (0, 0, 0)

Pressure: 1.0
Overrelaxation: 0.02

Iterations: 5
PIC/FLIP Mix 0.6

Frame Range: 0-120
Timescale: 0.1

Particle Count: 4800
Simulation Time: 3 Minutes 33 Seconds

Dam Break
Particle Scale: 0.1

Cell Size: 0.2
Domain: 5x5x5

Force: (0, -9.8, 0)
Velocity: (0, 0, 0)

Pressure: 1.0
Overrelaxation: 0.02

Iterations: 5
PIC/FLIP Mix 0.8

Frame Range: 0-120
Timescale: 0.1

Particle Count: 15000
Simulation Time: 9 Minutes 20 Seconds

Honey
Particle Scale: 0.2

Cell Size: 0.4
Domain: 5x5x5

Force: (0, -9.8, 0)
Velocity: (0, 0, 0)

Pressure: 0.2
Overrelaxation: 0.0001

Iterations: 1
PIC/FLIP Mix 0.0

Frame Range: 0-120
Timescale: 0.1

Particle Count: 520
Simulation Time: 1 Minute 8 Seconds

1 Million Particles
Particle Scale: 1.0

Cell Size: 5.0
Domain: 200x200x200

No Simulation was attempted 
as loading the scene file

 took ~20 minutes. 

This is due to Maya being unable to handle a large 
number of objects in the viewport.

Particle Count: 1000000
Generation Time: ~40 Minutes
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Videos of the simulations can be found in /artefacts/videos. The scene files can be 
found in /artefacts/scenes/.

3.2 Limitations
There are a few limitations to the program. The first is the instability of the simulator. 

Due to errors in the divergence calculation, high values of overrelaxation, or too many 
iterations can cause the fluid to behave strangely. As well as this, particles will pop at times 
in the simulation. Ideally, improving the divergence calculation and removing the pressure, 
overrelaxation, and iteration settings altogether would make the tool a lot easier to use. 

The second limitation is the time it takes to simulate the fluid. In further implementations, 
GPU support as well as a faster divergence calculation method would be included.

The third limitation, which is more of a problem with Maya, was not being able to 
have relative image paths. Although a set-project method could work, It can be quite limiting 
as users may need to set-project elsewhere depending on their scene. Therefore, at the present 
moment, Maya Fluid Simulator does not have any icons or images associated with it.

Other limitations are small issues that, with time, will be sorted as the code evolves.

Although the program is already quite comprehensive, plans for the future would be 
to implement inflow objects, colliders, and a meshing solution so that the fluids could be used 
more for real productions.

3.3 Conclusion
This tool was written for L4 Technical Arts Production for Computer Animation 

Technical Arts at Bournemouth University. There is a very high chance that the algorithms 
implemented are not entirely correct, therefore be weary when re-using the code. If you wish 
to access (or correct) the source code, you can do so here.

https://github.com/cjhosken/MayaFluidSimulator
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